If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+74x+24=0
a = 36; b = 74; c = +24;
Δ = b2-4ac
Δ = 742-4·36·24
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(74)-2\sqrt{505}}{2*36}=\frac{-74-2\sqrt{505}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(74)+2\sqrt{505}}{2*36}=\frac{-74+2\sqrt{505}}{72} $
| 6x+111/9=9 | | 10y2+()=20y | | 6(6x-6)+15x= | | 7(1+2a)=119 | | 65=-(4k-5)-6k | | x+10/2=-6 | | 8u^2-12u+12=0 | | 2x2+x=−1 | | (X+5)(x-5)=3x-2 | | 11x2-8=-6x-9x2 | | 67=-4x+3(5-3x) | | -2=3-x | | 5=-3n+8n | | X+(2x-9)=180 | | -3x+15x+7=8x= | | X+(2x-9=180 | | x2+4x=17 | | -2x-6=2x=6 | | -3n-16=-10 | | 16=6p+2p | | -5(-4x-3)=95 | | 4x2+4x=−1 | | x=18+1/2 | | 18=1/2+x | | 4(m-5)-2(m+6)=-40 | | 126=-7(5x-2)+7 | | 3x2-2x=-4x-7x2+12 | | 95=2y-5 | | 42+x=18+8x-25 | | -35=2(w-7)-5w | | -5(6n-6)+2n=0 | | 90=2y-5 |